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Abstract

The paper is concerned with the prediction of the deposition rate of small particles from two-dimen-

sional turbulent gas flows onto solid boundaries using a fully-Eulerian two-fluid approach. Density-

weighted averaging is used to derive the ensemble-averaged particle equations which are closed with simple

models for the particle turbulence correlations. A possible inconsistency in the modelling is discussed. A

special method of handling the equations provides much clearer insight into the physical processes gov-

erning deposition. The solution procedure uses a formulation which can automatically capture particle-free

regions and can predict surface deposition rates which may vary by several orders of magnitude. This is

illustrated via calculations of deposition from turbulent channel-flow which also allow prediction of the
inlet region where the particle flow is not fully-developed. Deposition from turbulent boundary layers is

also considered and calculations showing the interaction between velocity slip (caused by streamline cur-

vature), viscous drag, diffusion and turbophoresis are presented. The ability to handle complex geometries

is illustrated by a calculation of deposition in a gas turbine cascade. This also provides an illustration of

how inertial and diffusional deposition mechanisms work in concert and how the sum of the contributions

considered separately does not represent the total deposition rate. Some preliminary calculations and ex-

perimental data on the effect of thermophoresis in non-isothermal flows are also presented.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The widespread occurrence of dispersed gas–particle flows in natural and industrial processes
has provided the impetus for their extensive study, resulting in numerous research publications.
Most of these deal with particle motion in free turbulent flows where solid boundaries exert no
influence. Far fewer publications have been devoted to the prediction of particle deposition onto
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boundary surfaces and virtually all of this work is concerned with deposition in fully-developed
pipe-flow. This paper extends the theory and computational capability to the prediction of de-
position from two-dimensional flows where streamline curvature may influence particle transport
both in the free-stream and in the turbulent boundary layers.
Many publications describe calculations of the inertial deposition of particles from 2D flows

where the influence of turbulence is unimportant. Most adopt a Lagrangian approach whereby
the particle equations are integrated along particle pathlines. In such deterministic flows, com-
paratively few pathline calculations give a good representation of the particle velocity field. The
particle density field can also be determined accurately and efficiently if the so-called full-
Lagrangian approach is used (Healy and Young, 2001).
Difficulties arise when the particles respond to the fluid turbulence because Lagrangian

methods must now include a stochastic element. In the original formulation of Gosman and
Ioannides (1983), the flowfield was obtained by the random sampling of a crude turbulence model
at each time-step. A deposition calculation using a similar method has been reported by Kallio
and Reeks (1989) but problems arise in dealing with very small particles when Brownian diffusion
is important. Improved representations of the turbulence can be obtained by using Large Eddy
Simulations (Wang et al., 1998) or Direct Numerical Simulations (Squires and Eaton, 1991), but
the computation time is much greater, particularly for DNS. These techniques are useful as
research tools but are not suitable for engineering calculations.
When turbulence is important, the two-fluid Eulerian approach is computationally more effi-

cient and is the method adopted for the present work. The difficulty here is to provide closure
models for the averaged particle equations of motion. In recent years much progress has been
made by Derevich and Zaichik (1988), Derevich (1999), Reeks (1991, 1992), Hyland and Reeks
(1997), Simonin et al. (1993) and others. A two-fluid model, designed specifically with deposition
in mind, has also been reported by Young and Leeming (1997), hereafter referred to as YL97.
Their method of handling the equations emphasises the differing rôoles played by diffusion (particle
fluxes driven by density gradients) and turbophoresis (fluxes driven by fluctuating velocity gra-
dients). Turbophoresis was first mentioned by Caporaloni et al. (1975) and Reeks (1983), and
is now known to be the main mechanism for transporting particles with substantial inertia in
turbulent wall layers.
Even if suitable closure models can be found, the Eulerian approach is not without its diffi-

culties if the flowfield boundaries are geometrically complicated. Indeed, even in the absence of
turbulence, numerical problems arise involving the accurate representation of particle density
discontinuities, the capture of particle-free zones, and the physically correct treatment of solid
boundaries. It is only recently that these issues have begun to be addressed in the literature (Slater
and Young, 2001). This is probably because most deterministic particle flows in difficult geom-
etries are still computed using a Lagrangian approach and most Eulerian calculations of turbulent
particle flows have been confined to simple situations.
In this paper, the fully-Eulerian computational method of Slater and Young (2001) is extended

to include the effects of turbulence on deposition. The theoretical approach is similar to that
described in YL97 for the special case of deposition from turbulent pipe-flow, the main difference
being that particle-density-weighted rather than non-density-weighted averaging of the particle
equations of motion is used in the present work. Density-weighted averaging has the advantage
that fewer turbulence correlations are generated. This does not necessarily imply, of course, that
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the modelling is more accurate and, indeed, an apparent inconsistency in conventional particle
turbulence modelling is noted and discussed.
The form of the paper is as follows. In Section 2, the averaged particle equations of motion and

the turbulence closure models are presented. In Section 3, the 2D numerical solution procedure is
briefly described. In Section 4 calculations of deposition from turbulent channel-flow are pre-
sented to provide validation for the method. Section 5 then describes how free-stream conditions
can modify turbulent transport in boundary layers. Section 6 describes the deposition of small
particles onto gas turbine blades and is included to highlight an important application and to
show the potential for extension to other engineering problems.

2. Theory

2.1. Particle conservation equations

Consider the flow of small spherical mono-dispersed particles suspended in a carrier gas. The
analysis is restricted to dilute suspensions meaning that the fluid motion is unaffected by the
presence of the particles and that particle–particle collisions can be neglected. The conditions
under which these assumptions are valid have been stated many times. A particularly illuminating
account can be found in Tsirkunov (2001).
Using Cartesian tensor notation with the repeated suffix summation convention, the conser-

vation equations for particle mass and momentum can be written,

oqp
ot

þ
oðqpvkÞ
oxk

¼ 0 ð1aÞ

oðqpviÞ
ot

þ
oðqpvivkÞ

oxk
¼ qpFi ¼ qpðFD;i þ FL;i þ FT;i þ FB;iÞ ð1bÞ

where qp is the particle density (mass of particles per unit volume), vi is the i-component of the
particle velocity and Fi is the i-component of the force per unit mass acting on the particles.
Adopting the usual dusty gas approximations and neglecting gravity, the most important forces
are those associated with steady-state viscous drag, shear-flow lift, thermophoresis and Brownian
motion. These are denoted by subscripts D, L, T and B respectively.
The steady-state drag force per unit particle mass is written,

FD;i ¼
ðui � viÞ

sp
ð2aÞ

where ui is the i-component of the gas velocity and sp is the local particle inertial relaxation time.
For Stokes drag, sp is independent of the slip velocity and is given by sp ¼ d2pqmat=18lg where dp is
the particle diameter, qmat is the particle material density and lg is the gas dynamic viscosity. If the
slip Reynolds number exceeds about unity, the expression for sp should be modified by, for ex-
ample, the well-known empirical expressions of Morsi and Alexander (1972). Unfortunately, the
linear relationship between FD;i and ðui � viÞ is then compromised.
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An expression for the shear-flow lift force on a particle was first derived by Saffman (1965). An
instructive way of writing Saffman�s expression which brings out the dependence on sp is,

FL;i ¼ KL
X3
k¼1
k 6¼i

qg
qmat

sp
ouk
oxi

� �1=2 ðuk � vkÞ
sp

" #
ð2bÞ

where FL;i is the force per unit particle mass in the i-direction, qg is the carrier gas density and the
summation on k does not include the i-component. In Saffman�s original theory, the constant
KL ¼ 0:725 but a number of modifications have appeared in the literature since his original paper
and are discussed by Wang et al. (1997). These can be included if desired.
The thermophoretic force per unit particle mass can be written,

FT;i ¼
KTmg
sp

oðln TgÞ
oxi

ð2cÞ

where mg ¼ lg=qg and Tg is the gas temperature. KT is a coefficient which depends on the ratio of
the gas and particle thermal conductivities. KT is usually given by the empirical expression of
Talbot et al. (1980) which is not reproduced here. Eq. (2c) has also been written in a form to bring
out the dependence on sp.
The Brownian force per unit particle mass is given by,

FB;i ¼ � 1

qp

opp
oxi

¼ � kTg
mp

oðln qpÞ
oxi

¼ �DB
sp

oðln qpÞ
oxi

ð2dÞ

where pp is the particle partial pressure due to random thermal motion, k is Boltzmann�s constant,
mp is the mass of a particle and DB is the Brownian diffusion coefficient, given by Einstein�s
equation DB ¼ kTg=spmp. The derivation of this equation and a good discussion on Brownian
diffusion is given by Ramshaw (1979).

2.2. Averaged particle equations for turbulent flow

For turbulent flow, the instantaneous particle conservation equations must be averaged. Par-
ticle density-weighted averaging was used by Simonin et al. (1993), Derevich and Zaichik (1988)
and Hyland and Reeks (1997), but YL97 used non-density-weighted averaging. Density-weighted
averaging is popular because fewer turbulence terms are generated but this does not necessarily
mean that the turbulence modelling is more accurate.
Because of the algebraic advantages, density-weighted ensemble averaging is used here.

Accordingly, qp and the gas velocity ui are decomposed into an ensemble-mean quantity (denoted
by an overbar) and a fluctuating component (denoted by a single prime). Thus,

qp ¼ �qqp þ q0
p ðq0

p ¼ 0Þ

ui ¼ Ui þ u0i ðu0i ¼ 0Þ

Other quantities are decomposed into a density-weighted ensemble-mean (denoted by a double
overbar) and a fluctuating component (denoted by a double prime). Thus,
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qpvi ¼ qpVi þ qpv
00
i ðqpvi ¼ �qqpVi ; qpv

00
i ¼ �qqpv

00
i ¼ 0Þ

This notation is, the authors believe, much more easily readable and transparent than the ubiq-
uitous, but awkward and often ambiguous, angled brackets h	 	 	i.
Applying this averaging process to Eqs. (1) gives the density-weighted, ensemble-averaged

equations,

o�qqp
ot

þ
oð�qqpVkÞ
oxk

¼ 0 ð3aÞ

oð�qqpViÞ
ot

þ
oð�qqpViVkÞ

oxk
þ
oð�qqpv00i v00kÞ

oxk
¼ qpðFD;i þ FL;i þ FT;i þ FB;iÞ ð3bÞ

The averaging of the force terms in Eq. (3b) requires comment. The drag force is normally dealt
with by assuming sp to be a local constant evaluated at the local mean slip Reynolds number. This
approximation has been validated to a certain extent by the calculations of Wang et al. (1998).
Making this assumption gives,

qpFD;i ¼ �qqpFD;i ¼
�qqpðUi � ViÞ þ qpu

0
i

sp
¼

�qqpðUi � Vi þ u0iÞ
sp

ð4aÞ

Averaging of the lift force term has not yet been addressed in the literature. Ignoring any
correlation between fluctuating particle density and gas velocity results in,

qpFL;i ¼ �qqpFL;i ¼ KL
X3
k¼1
k 6¼i

qg
qmat

sp
oUk

oxi

� �1=2
�qqpðUk � VkÞ

sp

" #
ð4bÞ

If fluctuations of gas temperature and particle density are uncorrelated, then the averaged ther-
mophoretic force term is,

qpFT;i ¼ �qqpFT;i ¼
KTmg�qqp

sp

oðln �TTgÞ
oxi

ð4cÞ

Finally, the averaged Brownian force per unit particle mass is,

qpFB;i ¼ �qqpFB;i ¼ �DB
sp

oð�qqpÞ
oxi

ð4dÞ

Combining Eqs. (3a) and (3b) and substituting Eqs. (4) gives the non-conservative form of the
particle momentum equation,

oVi
ot

þ Vk
oVi
oxk

¼ Ui � Vi
sp

� oðv00i v00kÞ
oxk

þ u0i
sp

� v00i v
00
k

�qqp

o�qqp
oxk

� DB
sp�qqp

o�qqp
oxi

þ FL;i þ FT;i ð5Þ

Eq. (5) does not look very promising. In particular, the terms on the RHS with mean density
gradients look out of place in a momentum equation. Nevertheless, as shown below, the equation
can be recast in a form which clearly displays the various mechanisms of turbulent particle
transport and also provides a suitable structure for computational work.
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2.3. Particle turbulence correlations

Closure of Eq. (5) requires empirical expressions for the following correlations:

�qpv
00
i v

00
k ¼ ��qqpv

00
i v

00
k ð6aÞ

qpu
0
i ¼ �qqpu

0
i ð6bÞ

The correlation in Eq. (6a) is called the particle Reynolds stress. That in Eq. (6b) does not have a
recognised name but will be referred to here as the density–velocity correlation.
The first stage in modelling the particle Reynolds stress is to examine its transport equation.

The method of derivation is similar to the procedure for deriving the Reynolds stress transport
equation in single-phase flow and has been carried through by Derevich and Zaichik (1988) and
others. Neglecting lift, thermophoresis and Brownian motion, the equation is,

oðv00i v00j Þ
ot

þ Vk
oðv00i v00j Þ
oxk

¼ � 1

�qqp

oð�qqpv00i v00j v00kÞ
oxk

� v00i v
00
k

oVj
oxk

� v00j v
00
k

oVi
oxk

þ
u0iv

00
j þ u0jv

00
i � 2v00i v00j

sp
ð7Þ

In a homogeneous turbulent particle flow all gradients of mean quantities vanish and,

v00i v
00
j ¼

u0iv
00
j þ u0jv

00
i

2
ð8Þ

For inhomogeneous turbulence, the simplest approach is to ignore the stress production terms in
Eq. (7) and accept Eq. (8) regardless. YL97 show that this assumption of local equilibrium can be
surprisingly effective because it may allow the gross features to be predicted correctly even though
local details are less accurate. This, after all, is about the best that can be expected from current
single-phase turbulence calculations!
Even if Eq. (8) is accepted, however, it is still necessary to provide a local equilibrium model for

ðu0iv00j Þ. The simplest prescription (discussed in Appendix A) is,

u0iv
00
j ¼ u0jv

00
i ffi Cu0iu

0
j ð9aÞ

where,

C ¼ 1

sp

Z 1

0

e�s=spRðsÞds ð9bÞ

RðsÞ is the gas velocity autocorrelation function. A commonly used approximation is the simple
expression RðsÞ ¼ expð�s=sgÞ where sg is an integral time-scale of the turbulence. Substituting into
Eq. (9b) gives,

C ¼ sg
sg þ sp

ð10Þ

Finally, therefore,

v00i v
00
j ffi Cu0iu

0
j ¼

sg
sg þ sp

u0iu
0
j ð11Þ
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Eqs. (9)–(11) have been quoted by Derevich and Zaichik (1988), Simonin and Viollet (1990) and
Reeks (1991). However, although Eq. (9a) clearly requires the averaging to be density-weighted,
none of the derivations actually take this into account (see Appendix A).
The density–velocity correlation is also considered in Appendix A. For homogeneous turbu-

lence, the theory relates this to the mean particle density gradient via,

�qqpu
0
i ffi �CDik

o�qqp
oxk

ð12aÞ

where Dik is the turbulent diffusion tensor for a passive scalar. Dik is given by,

Dik ¼ sgu0iu
0
k ð12bÞ

and is independent of sp. Derevich and Zaichik (1988), Simonin and Viollet (1990) and Reeks
(1991) all arrive at similar equations. Further simplification can be achieved by assuming isotropy
so that Dik ¼ dikDT where DT is the isotropic turbulent diffusion coefficient. Thus,

�qqpu
0
i ffi �CDT

o�qqp
oxi

ð13Þ

In practice, DT can be estimated from the turbulent Schmidt number ScT ¼ mT=DT which is as-
sumed to take values close to unity. mT is the eddy viscosity of the carrier gas flow and is assumed
known throughout the flowfield. It should be noted that the correction for the effect of crossing
trajectories suggested by Simonin et al. (1993) has not been included.
The method is completed by providing a prescription for sg. Recently, Rambaud et al. (2002)

compared a number of well-known methods for estimating the Lagrangian integral time-scale in a
channel-flow with DNS data. Interestingly, the accuracy of the predictions varied inversely with
the complexity of the method! The most reliable approach was to obtain sg from eddy viscosity
data as suggested in YL97. Thus,

sg ffi
mT
u0au

0
a

ð14Þ

The most appropriate co-ordinate direction a to use in Eq. (14) is that normal to the wall on which
deposition is occurring. Further away from the wall, the value of sg is not critical.

2.4. Further development of the particle equations

Combination of Eqs. (5), (10), (11) and (12) gives the following form of the ensemble-averaged
particle momentum equation,

oVi
ot

þ Vk
oVi
oxk

¼ � oðCu0iu0kÞ
oxk

� ðDT þ DBÞ
sp�qqp

o�qqp
oxi

þ Ui � Vi
sp

þ FL;i þ FT;i ð15Þ

For computational work, and also to obtain a clearer picture of the transport mechanisms, it is
useful to separate the particle flux into convective and diffusive components. This is done by
defining an ensemble-mean density-weighted convective velocity Wi by the equation,
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�qqpVi ¼ �qqpWi � ðDT þ DBÞ
o�qqp
oxi

ð16Þ

Substituting Eq. (16) into Eqs. (3a) and (15) has the effect of shifting the diffusive terms into the
mass conservation equation,

o�qqp
ot

þ
oð�qqpWkÞ

oxk
¼ o

oxk
ðDT

"
þ DBÞ

o�qqp
oxk

#
ð17aÞ

oVi
ot

þ Vk
oVi
oxk

ffi � oðCu0iu0kÞ
oxk

þ ðUi � WiÞ
sp

þ F L;i þ F T;i ð17bÞ

Eq. (17a) has the form of a conventional convection–diffusion equation. The diffusivity DT is
independent of sp. This is because, although high inertia particles respond poorly to the gas
turbulence, their induced velocities are more persistent than those of low inertia particles. This
result has been confirmed by Reeks (1977) and Pismen and Nir (1978).
When sp is small, the main component of the particle flux is diffusive and Eq. (16) shows that

there is substantial difference between Vi and Wi . But, in such situations, the acceleration term on
the LHS of Eq. (17b) can usually be neglected because, compared with Ui � Wi , it is multiplied by
sp. When sp is large, the acceleration term is definitely non-negligible, but then the particle flux is
mainly convective and Vi ffi Wi . This argument suggests that it is possible to replace the total
velocity Vi in the acceleration term by the convective velocity Wi without serious error over the
whole range of sp. Eq. (17b) then becomes,

oWi

ot
þWk

oWi

oxk
ffi � oðCu0iu0kÞ

oxk
þ ðUi � WiÞ

sp
þ eFFL;i þ eFFT;i ð17cÞ

Eq. (17c) is very instructive. The left hand side represents the mean particle convective acceler-
ation while the terms on the right represent the forces per unit particle mass producing this ac-
celeration. The final three terms represent drag, lift and thermophoresis. The first term involving
the particle Reynolds stress deserves further comment.
Consider a 2D boundary layer type flow with the wall parallel to the x1-direction and suppose

that all terms in the wall-normal (x2-direction) particle momentum equation can be neglected
except for the viscous drag and the Reynolds stress term. Eq. (17c) reduces to,

�qqpV2 ¼ �sp�qqp
oðv002v002Þ
ox2

¼ �sp�qqp
oðCu02u02Þ

ox2
ð18Þ

Eq. (18) highlights the fact that the gradient of the wall-normal component of the particle
Reynolds stress causes a drift flux of particles towards the wall. This is known as turbophoresis
(Reeks, 1983) and, as shown by YL97, is the dominant transport mechanism when sp 
 sg.
Particles impelled towards the wall by eddies in the buffer layer coast into the sub-layer from
where they are unable to return because the turbulent fluctuations are, on average, too small.
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Neglect of turbophoresis can result in errors of several orders of magnitude in predicted de-
position rates.

2.5. The status of particle turbulence modelling

It is interesting to note that Eqs. (17), which have been derived using density-weighted aver-
aging, are essentially the same equations obtained in YL97 using the non-density-weighted ap-
proach. In YL97, however, a correlation involving the divergence of the particle velocity field was
ignored. This term is related to the compressibility of the particle–fluid and does not appear in
the present analysis because it is absorbed by the density-weighting. Now, the magnitude of the
correlation in question has recently been estimated by Cerbelli et al. (2001) who claim that it can
have a significant effect on deposition rates. This, in turn, suggests that there may be an incon-
sistency of comparable magnitude in the density-weighted turbulence modelling which has not
previously been noted. Further investigation points to the simple model of Eq. (9a) which is
probably a better representation of ðu0iv0jÞ rather than ðu0iv00j Þ, the term actually required. The
analysis in Appendix A, which is a formal derivation of Eq. (9a), emphasises the assumptions and
helps to substantiate this view.
Although the particle turbulence model used in the present work is simple and straightforward,

the authors are aware that considerably more elaborate models have been proposed. For example,
Simonin et al. (1993) have derived transport equations for the density–velocity correlation of Eq.
(6b) and the gas–particle velocity covariance of Eq. (8). When these are integrated along with
Eq. (7), the local equilibrium assumption can be dropped in favour of closure at a higher level.
Simonin et al. (1997) claim improved accuracy but their calculations only cover a small range of
particle response times.
In the opinion of the authors, the current state of particle turbulence theory is such that more

complex modelling should be introduced only when it can be reliably substantiated, preferably by
experimental data. The theory of particle turbulence is extremely approximate and it is important
to appreciate that the reliability of even supposedly well-established results is still questionable.
The expectation of improved accuracy by more complex modelling and closure at higher levels
may not be well-founded.

3. Numerical solution procedure

Eq. (17c) does not involve the particle density and can be solved for Wi independently of Eq.
(17a). This is useful for certain applications but, for the finite-volume numerical solution pro-
cedure described below, it is actually preferable to work with a conservative form of the particle
momentum equation while retaining the diffusive terms in the mass conservation equation.
This can be achieved by combining Eq. (3a) with (17b) before making the approximation Wi ffi Vi
in the acceleration term. The resulting pair of equations which serve as a basis for the numerical
solution procedure are therefore,

o�qqp
ot

þ
oð�qqpWkÞ

oxk
¼ o

oxk
ðDT

"
þ DBÞ

o�qqp
oxk

#
ð19aÞ
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oð�qqpWiÞ
ot

þ
oð�qqpWiWkÞ

oxk
ffi �qqp

"
� oðCu0iu0kÞ

oxk
þ ðUi � WiÞ

sp
þ FL;i þ FT;i

#
ð19bÞ

A finite-volume scheme is used and the 2D versions of Eqs. (19) are discretised on a mesh of
arbitrarily shaped quadrilaterals as shown in Fig. 1a. A pseudo-transient numerical method is
used, similar to that described by Slater and Young (2001) for non-turbulent flows. The following
brief description highlights those aspects concerned with turbulent transport.
Cell-centred storage is used with a second-order accurate, symmetrical discretisation for the

fluxes through the cell faces. The second-order derivatives in Eq. (19a) are constructed as follows.
Referring to Fig. 1b, and denoting the co-ordinates by ðx; yÞ, the first-order derivatives of a
variable / at the centre of cell ABCD are given by (Hirsch, 1990),

o/
ox

� �
¼ ð/A � /CÞðyB � yDÞ � ð/B � /DÞðyA � yCÞ

ðxA � xCÞðyB � yDÞ � ðxB � xDÞðyA � yCÞ
ð20aÞ

o/
oy

� �
¼ ð/B � /DÞðxA � xCÞ � ð/A � /CÞðxB � xDÞ

ðxA � xCÞðyB � yDÞ � ðxB � xDÞðyA � yCÞ
ð20bÞ

If the /�s are themselves first-order derivatives at the points A, B, C and D, then Eqs. (20) allow
the calculation of the second-order derivatives at the central point.
The symmetrical discretisation places equal weight upon upstream and downstream travelling

information which is counter to the convective nature of the flow. Numerical stability is therefore
maintained by adding adjustable artificial diffusion as described by Slater and Young (2001). It is
important that this artificial diffusion is directionally dependent. The wall-normal deposition
fluxes are much lower than the streamwise fluxes and are easily swamped by isotropic artificial
diffusion.
As discussed by Slater and Young (2001), the correct formulation of physically-based

boundary conditions is vital to successful flow calculations. At the inlet boundary, qp and the Wi

Fig. 1. (a) Structured mesh of arbitrarily shaped quadrilaterals, cell-centred storage. (b) Twelve point stencil used to

calculate second derivatives.
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are prescribed. At solid wall and outflow boundaries the particle flux is calculated by Eq. (16) as
the sum of the convective and diffusive contributions. When the convective velocity vector is
directed out of the flow, the convective flux is calculated using a first-order upwinding scheme
which models the physics correctly. The diffusive wall fluxes, on the other hand, are associated
with an upstream influence and are evaluated from the particle density field with boundary
condition qp ¼ 0. This condition, although physically incorrect even in the limit sp ! 0 (YL97), is
easy to implement and the numerical errors are small.

4. Deposition from 2D turbulent channel-flow

4.1. Experimental data and non-dimensionalisation

Virtually all the experimental data on particle deposition has been obtained in turbulent pipe-
flow while the calculation method described above is currently restricted to plane 2D flows.
However, because deposition is mainly controlled by the near-wall turbulence, calculations for
channel-flow, non-dimensionalised with respect to wall variables, should give similar results to
pipe-flow and provide a suitable vehicle for code validation.
Pipe-flow deposition data are usually presented by plotting dimensionless particle deposition

velocity Vdepþ against dimensionless relaxation time spþ. These are defined by,

Vdepþ ¼ Jw
us�qqp;mean

spþ ¼ spu2s
mg

ð21Þ

where Jw is the deposition mass flux, us is the friction velocity, qp;mean is the mean particle density
in the pipe and mg is the gas kinematic viscosity. Vdepþ is independent of streamwise position if the
fluid and particle flows are both fully-developed (YL97). The graph of Vdepþ versus spþ is not
universal because, for spþ � 1, Vdepþ becomes independent of spþ and depends only on the Sch-
midt number (Sc ¼ mgDB). In this region data are usually presented in terms of the group
ðspþ=Sc2Þ1=3 which is independent of particle diameter. Fig. 2 shows a compilation of some
experimental data.

4.2. The fluid flowfield and computational grid

The mean streamwise fluid velocity profile was expressed by �uuxþ ¼ f ðyþÞ, where x is streamwise
distance, y is distance from the wall and + denotes non-dimensionalisation using wall variables.
The empirical expression of Kallio and Reeks (1989) was used. The eddy viscosity mT and the
dimensionless wall-normal mean-square fluctuating velocity ðu0yþu0yþÞ were assumed to depend on
yþ only. The equations of YL97 were used. ðu0xþu0xþÞ is of secondary importance and was obtained
assuming isotropy of the turbulence.
Calculations were performed for a 2D channel of height 10 mm carrying air at a Reynolds

number of 4000. The channel length depended on the particle inertia. Thus, for spþ ¼ 0:01 a
length of 0.1 m was sufficient to attain fully-developed particle profiles while for spþ ¼ 1000, 1.3 m
was required. For computational accuracy, a separate grid was used for each particle size, ex-
perience showing that about 20 streamwise and 30 cross-channel cells were sufficient. Across the
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channel, a non-uniform grid was used with a very fine spacing near the wall. The first point was at
a distance of one particle radius from the wall and the rest of the grid established using a geo-
metric progression with ratio 1.3 or less.

4.3. Attainment of fully-developed particle flow

At the inlet, the particles were injected computationally with a uniform distribution and after a
certain distance the flow became self-similar. The dimensionless deposition flux Vdepþ and the
particle mean velocity profile were then independent of axial location but �qqp continued to fall
because of deposition. The non-dimensional density �ww ¼ �qqp=�qqp;mean remained constant, however.
(�qqp;mean is the particle density averaged across the channel.) Fig. 3 shows results for particles with
spþ ¼ 200. Fig. 3a is a scale drawing of the pipe while Fig. 3b shows the grid, stretched so that the
overall aspect ratio is one. Fig. 3c presents contours of �qqp (�qqp ¼ 1 at inlet) which fall continually in
the flow direction and Fig. 3d shows contours of �ww becoming independent of axial distance half
way along the pipe.
The ability to calculate deposition in the developing flow region is not taken further here

although it is of engineering interest and also useful for interpreting experimental data. For ex-
ample, there is at present no information available on the distance required to obtain a fully-
developed particle flow in a pipe or channel.

4.4. Results for isothermal flow

Initially, the gas flow was assumed to be isothermal and thermophoresis was neglected. Particle
deposition is then controlled by turbulent and Brownian diffusion, turbophoresis, viscous drag,
and shear-flow lift. It was assumed in all calculations that solid boundaries are perfectly absorbing
and hence that impaction and deposition are synonymous.

Fig. 2. Particle deposition from fully-developed turbulent pipe-flow: A compilation of isothermal experimental data.
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When spþ < 0:1, turbulent and Brownian diffusion dominate and convective transport is un-
important. Turbulent diffusion dominates in the core and buffer regions but, very close to the wall,
the transport is by Brownian diffusion. Fig. 4 shows the results of the 2D calculations obtained by
setting ðspþ=Sc2Þ1=3 ¼ 5� 10�5 and �turning off� the convective terms. Also plotted are the ex-
perimental data [for which ðspþ=Sc2Þ1=3 ¼ 5� 10�5 is approximately representative] and an ana-
lytical solution calculated by the method of Beal (1970). The agreement, particularly with the
analytical solution, is very good.

Fig. 4. Deposition from isothermal turbulent channel-flow. Calculations include turbulent and Brownian diffusion

only. Experimental data as for Fig. 2. (a) Particles treated as point masses, (b) boundary offset by one particle radius.

Fig. 3. Particle density in isothermal turbulent channel-flow with spþ ¼ 200. (a) Channel to scale, aspect ratio¼ 224,
(b) computational grid stretched in wall-normal direction, aspect ratio¼ 1, (c) contours of �qqp, (d) contours
of �ww ¼ �qqp=�qqp;mean.
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Fig. 4 also shows the effect of displacing the boundary by an interception distance of one particle
radius. It is evident, however, that the steep rise in the deposition curve is caused not by this but
rather by the effects of turbophoresis. Fig. 5 shows the results of calculations including turbo-
phoresis, diffusion and viscous drag, with and without the addition of lift. For the calculations
without lift, the prediction for spþ > 100 is good but, in the region 1 < spþ < 10, the curve rises
less steeply than the experimental data. The introduction of lift makes a substantial improvement.
The particles lead the carrier fluid near the wall resulting in a wallwards directed lift force, the
magnitude of which depends on the slip velocity. The effect is most marked in the range
10 < spþ < 100 but, even with lift, the predicted deposition rates are still low compared with the
experimental data.
A comparison with the pipe-flow calculations of YL97 (Fig. 7 of that paper) shows that the

addition of lift produces similar changes to those shown in Fig. 5 but that the agreement with the
experimental data is superior. This is probably because the present calculations were performed
for a plane 2D channel rather than an axi-symmetric pipe and that deposition rates for spþ 
 10
are very sensitive to small variations in the modelling parameters.
The variations of particle velocity and density with yþ are shown in Fig. 6 for spþ ¼ 0:1, 1, 50,

100 and 1000. The effect of lift is included. On the left is the particle mean streamwise velocity
W xþ. The value at the wall increases with spþ because particles do not obey a no-slip condition.
The wall-normal particle velocity W yþ is shown in the centre. The negative peak at yþ ffi 15 for
spþ ¼ 0:1 and 1 corresponds to the maximum turbophoretic force. For spþ ¼ 50, 100 and 1000,
the effect of lift is clearly seen as the particles continue to accelerate towards the wall despite the
reduction of the turbophoretic force in the region yþ < 15.
Profiles of non-dimensional particle density �ww are shown on the right of Fig. 6. For spþ ¼ 0:1

turbulent and Brownian diffusion dominate. The very steep gradient in �ww at the wall is necessary

Fig. 5. Deposition from isothermal turbulent channel-flow with and without shear-flow lift. Calculations include

turbulent diffusion, turbophoresis, viscous drag, Brownian diffusion and shear-flow lift as indicated. Experimental data

as for Fig. 2.
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to maintain the particle flux by Brownian diffusion when the fluid turbulence level is very low. For
spþ ¼ 1, the high peak in �ww is probably non-physical and stems from the assumption of local
homogeneous turbulence. In reality, the particle fluctuating velocity would not be completely
attenuated as the particles approach the wall and turbophoresis would remain an active transport
mechanism right through the sub-layer. For spþ ¼ 50, 100 and 1000, �ww is of order unity every-
where and is non-zero at the wall. The variations with yþ are related to convective continuity
requirements and do not indicate high diffusive fluxes.
A comparison of Fig. 6 with the similar Fig. 10 of YL97 shows that, although there is good

qualitative agreement in terms of the shape of the profiles, significant quantitative differences

Fig. 6. Deposition from isothermal turbulent channel-flow. Calculations include turbulent diffusion, turbophoresis,

viscous drag, shear-flow lift and Brownian diffusion. Particle streamwise velocity (left), particle wall-normal convective

velocity (centre), particle density (right). All quantities are non-dimensionalised. Note the changes of ordinate scale

from top to bottom.

S.A. Slater et al. / International Journal of Multiphase Flow 29 (2003) 721–750 735



exist. Evidently, the detailed particle turbulence field is very sensitive to small changes in the
modelling assumptions and quantitative predictions should be treated cautiously. This, of course,
is not unlike the current status of single-phase turbulent boundary layer calculations where good
predictions of the wall shear stress can often be made, despite an inability to resolve all details of
the near-wall turbulence.

4.5. Results for non-isothermal flow

When the channel wall is heated or cooled, cross-stream temperature gradients generate
thermophoretic forces on the particles which can be very significant in modifying the deposition
rates. In particular, if the wall is cooled below the mean gas temperature, thermophoresis en-
hances the deposition rate. It is not the purpose of this paper to describe an exhaustive study of
thermophoresis but it is of interest to present some preliminary results.
Fig. 7 shows the results of calculations where all transport mechanisms, including thermo-

phoresis, have been included. DT is the difference between the gas temperatures on the centre-line
and on the wall. The experimental measurements were obtained by Leeming (1995) using
equipment similar to that of Liu and Agarwal (1974) but with a heated gas–particle flow and a
cooled pipe wall. For the calculations, the thermophoretic coefficient KT of Eq. (2c) corresponded
to the value in the experiments. From Fig. 7, it is clear that small temperature differences can have
a dramatic effect on deposition rates for low inertia particles. Thus, when DT ¼ 10 K, the de-
position rate of particles with spþ ¼ 0:1 increases by two orders of magnitude. The experimental
data, although sparse, are in good agreement with the calculations, thus bestowing a certain
credibility on the theory. A more detailed study of the effects of thermophoresis on particle de-
position from turbulent flows is currently in progress.

Fig. 7. Deposition from non-isothermal turbulent channel-flow including thermophoresis. Calculations include tur-

bulent diffusion, turbophoresis, viscous drag, shear-flow lift, Brownian diffusion and thermophoresis.
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5. Particle transport in boundary layers

Although not a complete validation, the results of the previous section provide good evidence
(i) that deposition rates in the only flow situation where experimental data exists can be predicted
with reasonable accuracy and, (ii) that the calculation scheme can handle ranges of particle re-
sponse times and deposition rates extending over four or five orders of magnitude. On the strength
of this, more complex geometries were considered, in particular the gas–particle flow in a 2D
turbine blade cascade. This configuration is of engineering importance because of applications in
predicting the deposition rates of small water droplets onto steam turbine blades and of ash
particles onto blading in coal-fired gas turbines. At present, there is no reliable theoretical way of
obtaining this information.
Particle flow in a cascade is also a good theoretical test case because all modes of transport are

represented. When the particles enter the cascade, the velocity slip caused by the curved
streamlines results in a particle drift towards the pressure surface boundary layer. Transport
within the boundary layer then depends on the particle inertia, the gas velocity profile, the tur-
bulence structure and the streamline curvature. There are two limiting cases:

(i) The particles have sufficient wallward momentum to coast across the boundary layer without
being influenced strongly by the gas flow, and,

(ii) the particles are decelerated and turned by the gas in a direction parallel to the surface.

Particles with large inertia entering the boundary layer with large velocity slip will be little
influenced by the turbulence and will behave more like the first limiting case, coasting across the
layer to impact the surface. Particles with smaller inertia will behave more like the second limiting
case and, once entrained in the boundary layer, will be influenced by all the turbulent transport
mechanisms operating there.
It is therefore evident that the transport of particles in a well-defined boundary layer provides

the possibility of studying some physical phenomena which are not found in channel-flow. Ac-
cordingly, the air-particle flow in a turbulent boundary layer on a flat plate with zero pressure
gradient was investigated before attempting a more complex 2D cascade calculation.

5.1. The boundary layer flowfield

The flowfield was generated by the boundary layer code STAN5 developed at Stanford Uni-
versity. A k–l turbulence model was used and the fluctuating velocity components calculated
assuming isotropy of the turbulence. This obviously limits the accuracy of the deposition calcu-
lations but the point of the exercise was to obtain physical understanding. The boundary layer was
fully turbulent from the leading edge with a free-stream velocity of 100 m/s and a Reynolds
number per unit length of 5.5� 106. Fig. 8 shows contour plots of the time-mean streamwise
velocity Ux, the eddy viscosity mT and the wall-normal rms fluctuating velocity ðu0yÞrms ¼ ðu0yu0yÞ

1=2
,

together with profiles of each variable at the final x-station (normalised with respect to wall
variables). At the leading edge, some 200 mm are needed for the calculation to settle down after
the initial guess but, thereafter, the variables are well-behaved apart from a small �glitch� in ðu0yÞrms
near the outer edge of the layer.

S.A. Slater et al. / International Journal of Multiphase Flow 29 (2003) 721–750 737



Fig. 8 emphasises the fact that the damping of the turbulence quantities by the wall is restricted
to a very narrow physical region indeed. This is especially true for ðu0yÞrms, the gradient of which is
responsible for turbophoresis. ðu0yÞrms increases slowly from the free-stream boundary to a max-
imum at the edge of the buffer layer before dropping rapidly to zero at the wall. Over most of the

Fig. 8. Gas flowfield in a turbulent boundary layer on a flat plate with zero pressure gradient. Streamwise velocity (top),

turbulent/laminar viscosity (middle), wall-normal mean-square fluctuating velocity (bottom). Profiles are at x ¼ 1 m
and are normalised using wall variables. Note the highly exaggerated wall-normal scale.
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boundary layer the main mechanism of turbulent particle transport is diffusion. Only very close to
the wall does turbophoresis play an important rôole.

5.2. Particle flow calculations

The importance of particle slip at the outer edge of the boundary layer was investigated in two
calculations. The chosen particle diameters were 6 and 20 lm and the particle material density was
930 kg/m3. As the boundary layer grows, the friction velocity us changes and the dimensionless
particle response time spþ increases. At the final x-station, the respective values of spþ were 82 and
892.
The particle calculations were started 200 mm from the leading edge where the boundary

layer flowfield was deemed to be �clean�. At the first x-station the slip velocity was set to zero
and the particle density was assumed to be uniform across the layer. At the outer edge of the
boundary layer, the speed of the particles was set to 100 m/s but they were injected into the
layer at an angle of 30� to the plate. There was therefore a slip velocity in both the stream-
wise and wall-normal directions. The particle density in the free-stream was assumed to be
uniform.

5.3. Behaviour of 6 lm diameter particles

Fig. 9 shows the results for the 6 lm particles. The particles enter the boundary layer at an
angle of 30� with a large slip velocity and are decelerated by viscous drag. This is a laminar effect
and turbulent transport is unimportant here. Fig. 9 shows profiles, at the final x-station, of the
wall-normal and streamwise components of the particle convective and gas velocities and the
particle density. Here, the outer edge of the boundary layer is at yþ 
 3200 and the slip velocity
has been almost completely annihilated by yþ 
 2000. During the deceleration, the particle density
increases (for continuity reasons) by a factor of 30.
A graphic illustration of the particle behaviour can be obtained by plotting the ensemble-

mean particle pathlines. These are obtained by integrating the total particle velocity Vi from
Eq. (16) along chosen particle pathlines. The ensemble-mean particle mass flowrate be-
tween any two pathlines then remains constant. Selected pathlines (with a grossly exagger-
ated wall-normal scale) are shown in Fig. 9. The deceleration is evident as the pathlines turn
towards the gas flow direction and the increasing particle density is shown by the pathline
convergence.
In contrast, the behaviour near the wall is dominated by the turbulence. From yþ 
 2000

to yþ 
 100 the main form of transport towards the wall is turbulent diffusion. This is evi-
dent from the strong particle density gradient coupled with a near-zero convective velocity.
From yþ 
 100 to the wall, the particles experience a strong turbophoretic force. This is shown
by the ensemble-mean pathlines which indicate quite a strong wallward acceleration close to the
wall.
For this example, the ratio of the particle flux at the wall to the flux entering the boundary layer

takes the value 0.205. This highlights the strong decelerating and turning effect of the boundary
layer: most particles are convected by the gas out of the downstream flow boundary.
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5.4. Behaviour of 20 lm diameter particles

The behaviour of 20 lm particles, shown in Fig. 10, is more straightforward. These particles are
also injected at an angle of 30� and experience a deceleration in the y-direction due to viscous
drag. There is, however, little effect on the particle velocity in the x-direction (the gas leads the
particles in the free-stream but lags at the wall) and the particles experience only a mild turning

Fig. 9. Transport of 6 lm diameter particles in the turbulent boundary layer of Fig. 8. Particles are injected into the
layer at an angle of 30� to the plate. Particle density normalised by free-stream value (top), ensemble-mean particle

pathlines (middle), ensemble-mean streamwise and wall-normal velocities normalised by us (bottom). Solid lines are

particles, dashed lines are gas. Note the highly exaggerated wall-normal scale.
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effect before impacting the wall. Nonetheless, the increase in particle density as required by mass
continuity as the wall-normal velocity decreases is significant.
Because of the higher particle inertia, turbulent transport effects are not much in evidence.

Indeed, the increasing particle density towards the wall actually causes a turbulent diffusive
flux away from the wall. Its magnitude is, however, very much less than the wallwards convective

Fig. 10. Transport of 20 lm diameter particles in the turbulent boundary layer of Fig. 8. Particles are injected into the
layer at an angle of 30� to the plate. Particle density normalised by free-stream value (top), ensemble-mean particle

pathlines (middle), ensemble-mean streamwise and wall-normal velocities normalised by us (bottom). Solid lines are

particles, dashed lines are gas. Note the highly exaggerated wall-normal scale.
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flux. The contribution from turbophoresis is also small, the high values of spþ resulting in a small
value of C from Eq. (10).
In contrast to the 6 lm particles, the ratio of the particle mass flux impacting the plate to the

flux entering the boundary layer is 0.916. Only a small fraction of the particles is convected
through the downstream flow boundary.

6. Deposition in a turbine cascade

6.1. Grid generation and flowfield calculation

The complex geometry of a turbine cascade poses a number of difficult computational prob-
lems, not least the capture of particle-free zones and the accurate representation of particle density

Fig. 11. Computational C-mesh for turbine blade calculation, chord length 37 mm, maximum Mach number 0.6. The

lower diagram shows the near-wall mesh expanded 20 times in the wall-normal direction.
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discontinuities at the zone boundaries. For turbulent flows must be added the problems of cal-
culating deposition rates which, as exemplified by the channel-flow calculations of Section 4, may
vary by several orders of magnitude.
Fig. 11 shows the turbine blade (axial chord length 37 mm, maximum Mach number 0.6) se-

lected for analysis. The blade was designed for use in a coal-fired industrial gas turbine. Although
the gas stream is filtered, ash particles of diameter 5–10 lm enter the turbine and it is important to
be able to predict their rate of deposition onto the blades. The gas temperature at inlet is 1500 K
but the blades are cooled to a surface temperature 400 K lower. Such a large temperature dif-
ference suggests that thermophoresis may be important.
The gas velocity field was calculated using a Navier–Stokes solver. The velocities were then

interpolated onto the C-mesh of Fig. 11 for the particle calculations. Using the computed blade
surface pressure distribution, a boundary layer code was used to generate the required turbulence
correlations. The boundary layer was assumed to be turbulent from the forward stagnation point
and the variation of the friction velocity us is shown in Fig. 12.

6.2. Deposition characteristics for 5 lm diameter particles

Fig. 13 shows particle density contours (normalised by the value at cascade inlet) for particles
of diameter 5 lm entering the cascade uniformly with zero slip velocity. There is a particle-free
region adjacent to the suction surface caused by the inability of the particles to follow the gas
streamlines. The method by which such zones are automatically captured at run-time is described
by Slater and Young (2001).
Fig. 14 shows the variation of deposition rate on the blade surface for four different calcula-

tions. The total area under each curve is related to the deposition fraction F , defined as the fraction
of particles entering the cascade which deposit (F is presented as a percentage in Fig. 14). When

Fig. 12. Variation of friction velocity us around the turbine blade. The surface distance (normalised by the total surface

length) is measured from the leading edge, positive on suction surface, negative on pressure surface.
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interpreting deposition distributions, it should be appreciated that spþ is not constant around the
blade because of the strong variation of us. Towards the rear of the pressure surface, which is the
region of most interest, spþ 
 1 for the 5 lm particles under consideration.
Fig. 14a shows the deposition distribution when the only mechanisms included in the calcu-

lation are turbulent and Brownian diffusion. Only a tiny fraction (F ¼ 0:0008) of the particles are
deposited at the leading edge by Brownian diffusion and there is no deposition at all on the
pressure surface. In Fig. 14b, inertial mechanisms are included in the calculation but both types of
diffusion are excluded. F is now considerably higher with a value of 0.0205 (note the change in
ordinate scale) with most particles depositing at the leading edge rather than on the pressure
surface. The high deposition rate near the stagnation point is a result of the high streamline
curvature in this region and is a well-known laminar effect. The lack of deposition on the pressure
surface can be explained as follows. In the mainstream flow outside the boundary layer, streamline
curvature causes a drift of particles towards the blade. When the particles enter the boundary

Fig. 13. Transport of 5 lm diameter particles in a turbine cascade. Contours of constant particle density (normalised by
inlet value).
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layer, they are decelerated and their pathlines bend towards the gas streamlines as described in
Section 5. The deceleration for 5 lm particles, is such that they do not quite penetrate into the
buffer layer (yþ < 40) and hence are not influenced by turbophoresis. Apart from a very small
region near the trailing edge, particles are not deposited and are instead transported out of the
cascade within the boundary layer.
In Fig. 14c, both inertia and diffusion are included. The deposition at the leading edge is un-

changed but that on the pressure surface is increased dramatically giving F ¼ 0:0733. This is a
graphic illustration of the fact that, when diffusion and inertia operate together, the total is not the
sum of the parts considered in isolation. As before, streamline curvature causes a particle drift
into the boundary layer. Inertia alone cannot maintain this flux to the wall but the addition of
diffusion, aided by a favourable particle density gradient, allows the particles to reach the buffer
layer, come under the influence of turbophoresis, and then deposit.
Finally, Fig. 14d shows the effect of including thermophoresis (once again, note the change in

ordinate scale). Deposition on the pressure surface starts further upstream and F is increased by
22% from 0.0733 to 0.0895. This is a rather modest increase (compared with the changes due to
thermophoresis shown in Fig. 7 for channel-flow with spþ 
 1) and is an indication of the im-
portance of the centrifuging effect of streamline curvature which, in this case, tends to mask the
contribution from thermophoresis.

Fig. 14. Blade surface deposition distribution of 5 lm diameter particles in a turbine cascade plotted against normalised
surface distance (suction surface positive, pressure surface negative). Note the different ordinate scales. (a) Diffusion

only, no inertia, no thermophoresis, (b) inertia only, no diffusion, no thermophoresis, (c) inertia and diffusion, no

thermophoresis, (d) inertia, diffusion and thermophoresis.
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7. Conclusions

The paper has addressed several aspects of particle deposition from turbulent gas flows using a
fully-Eulerian calculation method for 2D flows. The main conclusions are:

(i) Density-weighted averaging combined with a simple particle turbulence model results in
equations similar to those obtained by YL97 using non-density-weighted averaging. The fact
that YL97 neglected a turbulence correlation involving particle compressibility points to a
possible over-sight in conventional density-weighted turbulence modelling.

(ii) Improved particle turbulence modelling might result from introducing higher order equa-
tions into the analysis but this needs to be done without obscuring the physics by the math-
ematics. The status of the theory is such that more complex models should be introduced
cautiously and only when well-substantiated, preferably by experimental data.

(iii) Decomposition of the particle flux into convective and diffusive components is useful
both for exposing the different rôoles of diffusion and turbophoresis and for developing
the numerical solution technique. It is believed that the analysis presented here pro-
vides a clearer picture of the characteristics of turbulent gas–particle flows than other treat-
ments.

(iv) Deposition from turbulent channel-flow was used to validate the modelling assumptions.
The agreement with pipe-flow data is good, although a comparison with YL97 showed dif-
ferences in the near-wall particle behaviour. The 2D calculations allow the developing region
of a channel-flow to be investigated. This is of engineering interest and also useful for inter-
preting experimental data. The computer code was shown to have the capability of predict-
ing deposition rates which vary by four or five orders of magnitude.

(v) The effect of thermophoresis in non-isothermal flows can have a dramatic effect on deposi-
tion rates for spþ < 10. The calculations have been compared with some new experimental
data and the agreement, although still tentative, is good.

(vi) Calculations of a boundary layer flow for two particle sizes have been presented. The smaller
particles show how particle slip caused by streamline curvature can modify the deposition
rates by interacting with the other transport mechanisms. Such interactions in a boundary
layer require much more investigation.

(vii) Deposition in a turbine cascade has been used to illustrate the computational capability in
more complex geometries. The calculations showed that pressure surface deposition resulted
from an interplay between streamline curvature, particle inertia, turbophoresis and diffusion
and cannot be predicted by considering each effect in isolation. For the chosen test condition,
the inclusion of thermophoresis produced only a moderate increase in deposition rate due to
the dominant effect of streamline curvature.

In summary, the paper has shown that simple particle turbulence modelling, combined with a
physically-based approach to equation handling can give rise to a flexible calculation scheme for
predicting deposition from complex 2D turbulent flows. Application of the method to three very
different flow geometries has illustrated its potential and has highlighted a number of areas for
future investigation, both in the physics of the turbulence modelling and in the interaction of the
different phenomena responsible for particle transport.
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Appendix A. Gas–particle turbulence correlations

Consider first the density-weighted correlation of Eq. (9a), ðu0iv00j Þ. Various methods have been
used to model this term, all giving essentially the same result. The following approach, based on a
fixed point integration, helps to identify the assumptions. Neglecting all forces except viscous
drag, Eqs. (1a) and (1b) are first combined to give,

ovj
ot

þ vk
ovj
oxk

¼ uj � vj
sp

ðA:1aÞ

Eq. (5) for the j-direction is,

oVj
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þ Vk
oVj
oxk

¼ Uj � Vj
sp

þ 1

�qqp

�qqpu
0
j

sp

24 �
o�qqpðv00j v00kÞ
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35 ðA:1bÞ

Subtraction then gives a differential equation for the particle fluctuating velocity,
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þ
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The term in braces involves only ensemble-mean quantities and will be denoted EM. Integrating
from �1 to t at constant xi gives,

v00j ðtÞ ¼
e�t=sp

sp

Z t

�1
ez=sp u0jðzÞ

�
� spvkðzÞ

ovjðzÞ
oxk

� spEM

�
dz ðA:3Þ

Eq. (A.3) is multiplied through by qpðtÞu0iðtÞ [the qpðtÞ is important and is not normally included]
and the dummy variable z is changed to s ¼ t � z. Ensemble averaging then gives,

u0iv
00
j ¼

1

sp

Z 1

0

e�s=sp ½u0ið0Þu0jðsÞ�ds�
Z 1

0

e�s=sp u0ið0ÞvkðsÞ
ovjðsÞ
oxk

� �
ds� spEMu0i ðA:4Þ

This expression is valid for inhomogeneous turbulent flows but in order to make progress it is
necessary to drop the second and third terms on the RHS. The Eulerian autocorrelation function
for the carrier gas is then defined in the usual way by (no summation),
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RijðsÞ ¼
u0ið0Þu0jðsÞ
u0ið0Þu0jð0Þ

ðA:5Þ

Substituting into Eq. (A.4), ignoring the requirement for a density-weighted correlation,

u0iv
00
j ffi u0iu

0
j
1

sp

Z 1

0

e�s=spRijðsÞds ðA:6Þ

If Rij is assumed to be isotropic, then RijðsÞ ¼ dikRðsÞ. This gives Eqs. (9) in the main text,

u0iv
00
j ffi Cðu0iu0jÞ ðA:7Þ

C ¼ 1

sp

Z 1

0

e�s=spRðsÞds ðA:8Þ

The integral time-scale sg is defined by,

sg ¼
Z 1

0

RðsÞds ðA:9Þ

Consider now the density-weighted correlation u0i. Subtracting Eq. (3a) from (1a) gives (for a
stationary flow with o�qqp=ot ¼ 0),

oqp
ot

¼ �v00k
o�qqp
oxk

� �qqp
ov00k
oxk

�
oq0

pvk
oxk

ðA:10Þ

Neglecting the second and third terms on the RHS (without any real justification, it must be said)
and integrating at constant xi from �1 to t gives,

qpðtÞ ffi qpð�1Þ �
o�qqp
oxk

Z t

�1
v00kðgÞdg ðA:11Þ

From Eq. (A.3), neglecting the second and third terms in the brackets,

v00kðgÞ ¼
e�g=sp

sp

Z g

�1
ez=spu0kðzÞdz ðA:12Þ

Substituting Eq. (A.12) into (A.11) and integrating by parts gives,

qpðtÞ ffi qpð�1Þ �
o�qqp
oxk

Z t

�1
u0kðzÞð1� e�ðt�zÞ=spÞdz ðA:13Þ

Eq. (A.13) is now multiplied through by u0iðtÞ and the dummy integration variable changed to
s ¼ t � z. After ensemble averaging and introducing Eq. (A.5),

qpu
0
i ¼ �qqpu

0
i ffi �

o�qqp
oxk

ðu0iu0kÞ
Z 1

0

ð1� e�s=spÞRikðsÞds ðA:14Þ

Writing RijðsÞ ¼ dikRðsÞ as before and noting Eqs. (A.8) and (A.9), gives,

�qqpu
0
i ffi �ðsg � spCÞðu0iu0kÞ

o�qqp
oxk

ðA:15Þ

Introducing C from Eq. (10) then gives Eq. (12a).
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